본문 바로가기

ML&DL and LLM

LangChain - 1.1 Model I/O Concept

 

참조 : https://python.langchain.com/docs/modules/model_io/concepts

 

Concepts | 🦜️🔗 Langchain

The core element of any language model application is...the model. LangChain gives you the building blocks to interface with any language model. Everything in this section is about making it easier to work with models. This largely involves a clear interfa

python.langchain.com

 

Concepts

Group Item Desc Others
Model LLMs LLMs in LangChain refer to pure text completion models.  
Chat Models Chat models are often backed by LLMs but tuned specifically for having conversations.  
Cosideration These two API types have pretty different input and output schemas.
In particular, the prompting strategies for LLMs vs ChatModels may be quite different.

Different models have different prompting strategies 
- Anthropic's models work best with XML
- while OpenAI's work best with JSON
 
Messages HumanMessage Messge from user  
AIMessage Message from the model  
SystemMessage Only some model support  
FunctionMessage The inputs to language models  
Prompt PromptValue    
PromptTemplate    
MessagePromptTemplate HumanMessagePromptTemplate
AIMessagePromptTemplate
SystemMessagePromtTemplate
 
MessagPlaceholder Oftentimes inputs to prompts can be a list of messages. This is when
you would use a MessagesPlaceholder.
 
ChatPromptTemplate    
Output
Parser
StrOutputParser LLM = String
ChatModel = message (.contents)
 
OpenAI Functions Parsers    
Agent Output Parsers    

 

'ML&DL and LLM' 카테고리의 다른 글

LangChain - 1.2.4 Few-shot prompt template  (0) 2024.03.28
LangChain - 1.2.1 PromptTemplate  (0) 2024.03.27
LangChain  (0) 2024.03.27
[Langchain] Prompt 튜닝  (1) 2024.03.05
[ML&DL] AI - 2 - AI 역사  (1) 2019.04.20